Creep behavior of bagasse fiber reinforced polymer composites.

نویسندگان

  • Yanjun Xu
  • Qinglin Wu
  • Yong Lei
  • Fei Yao
چکیده

The creep behavior of bagasse-based composites with virgin and recycled polyvinyl chloride (B/PVC) and high density polyethylene (B/HDPE) as well as a commercial wood and HDPE composite decking material was investigated. The instantaneous deformation and creep rate of all composites at the same loading level increased at higher temperatures. At a constant load level, B/PVC composites had better creep resistance than B/HDPE systems at low temperatures. However, B/PVC composites showed greater temperature-dependence. Several creep models (i.e., Burgers model, Findley's power law model, and a simpler two-parameter power law model) were used to fit the measured creep data. Time-temperature superposition (TTS) was attempted for long-term creep prediction. The four-element Burgers model and the two-parameter power law model fitted creep curves of the composites well. The TTS principle more accurately predicted the creep response of the PVC composites compared to the HDPE composites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Creep Behavior of Basalt and Glass Fiber Reinforced Epoxy Composites

The creep behavior of basalt fiber reinforced epoxy (BFRE) and glass fiber reinforced epoxy (GFRE) composites was studied through tensile testing at high temperature. To study the effect of reinforcing epoxy, the micro glass powder (MGP) was added at various volume percentage into the epoxy resin in BFRE composites. The initial strain for all the specimens were evaluated and compared with each ...

متن کامل

Creep and Dynamic Mechanical Behavior of Natural Fiber/Functionalized Carbon Nanotubes Modified Epoxy Composites

The creep and dynamic mechanical behavior of natural fiber/epoxy composites using functionalized multiwalled carbon nanotubes (MWCNTs) modified matrix were investigated. 0.4 wt% of MWCNTs functionalized with carboxylic acid groups (MWCNTs-COOH) were dispersed in epoxy and three-phase multiscale hybrid composites were processed by hot press. Natural fiber/epoxy two-phase composites without MWCNT...

متن کامل

Solid particle erosion of Bagasse fiber reinforced epoxy composite

Experiments were carried out to study the effects of impingement angle and particle velocity on the solid particle erosion behavior of Bagasse Fiber Reinforced Polymer Composites (BFRPCs). The erosive wear is evaluated at different impingement angles from 30° to 90° at four different velocities of 48, 70, 82 and 109 m/s. The erodent used is silica sand with the size range 150 – 250 m of irregul...

متن کامل

Bagasse Fiber – The Future Biocomposite Material : A Review

A biocomposite is a material formed by a matrix and a reinforcement of natural fibers like Jute, Coir, Sisal, Pineapple, Ramie, Bamboo, Banana and Bagasse, etc. Such natural fibers composites are low-cost fibers with high specific properties, low density and eco-friendly. The development of advanced biocomposite materials made is increasing worldwide. It will be an alternative way to develop th...

متن کامل

Finite Element Analysis of Low Velocity Impact on Carbon Fibers/Carbon Nanotubes Reinforced Polymer Composites

An effort is made to gain insight on the effect of carbon nanotubes (CNTs) on the impact response of carbon fiber reinforced composites (CFRs) under low velocity impact. Certain amount of CNTs could lead improvements in mechanical properties of composites. In the present investigation, ABAQUS/Explicit finite element code (FEM) is employed to investigate various damages modes of nano composites ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioresource technology

دوره 101 9  شماره 

صفحات  -

تاریخ انتشار 2010